skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yu, Tianhong Catherine"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Smart clothing has exhibited impressive body pose/movement tracking capabilities while preserving the soft, comfortable, and familiar nature of clothing. For practical everyday use, smart clothing should (1) be available in a range of sizes to accommodate different fit preferences, and (2) be washable to allow repeated use. In SeamFit, we demonstrate washable T-shirts, embedded with capacitive seam electrodes, available in three different sizes, for exercise logging. Our T-shirt design, customized signal processing & machine learning pipeline allow the SeamFit system to generalize across users, fits, and wash cycles. Prior wearable exercise logging solutions, which often attach a miniaturized sensor to a body location, struggle to track exercises that mainly involve other body parts. SeamFit T-shirt naturally covers a large area of the body and still tracks exercises that mainly involve uncovered joints (e.g., elbows and the lower body). In a user study with 15 participants performing 14 exercises, SeamFit detects exercises with an accuracy of 89%, classifies exercises with an accuracy of 93.4%, and counts exercises with an error of 0.9 counts, on average. SeamFit is a step towards practical smart clothing for everyday uses. 
    more » « less
    Free, publicly-accessible full text available March 3, 2026
  2. We present Ring-a-Pose, a single untethered ring that tracks continuous 3D hand poses. Located in the center of the hand, the ring emits an inaudible acoustic signal that each hand pose reflects differently. Ring-a-Pose imposes minimal obtrusions on the hand, unlike multi-ring or glove systems. It is not affected by the choice of clothing that may cover wrist-worn systems. In a series of three user studies with a total of 36 participants, we evaluate Ring-a-Pose's performance on pose tracking and micro-finger gesture recognition. Without collecting any training data from a user, Ring-a-Pose tracks continuous hand poses with a joint error of 14.1mm. The joint error decreases to 10.3mm for fine-tuned user-dependent models. Ring-a-Pose recognizes 7-class micro-gestures with a 90.60% and 99.27% accuracy for user-independent and user-dependent models, respectively. Furthermore, the ring exhibits promising performance when worn on any finger. Ring-a-Pose enables the future of smart rings to track and recognize hand poses using relatively low-power acoustic sensing. 
    more » « less
    Free, publicly-accessible full text available November 21, 2025
  3. Tactile sensing is essential for robots to perceive and react to the environment. However, it remains a challenge to make large-scale and flexible tactile skins on robots. Industrial machine knitting provides solutions to manufacture customiz-able fabrics. Along with functional yarns, it can produce highly customizable circuits that can be made into tactile skins for robots. In this work, we present RobotSweater, a machine-knitted pressure-sensitive tactile skin that can be easily applied on robots. We design and fabricate a parameterized multi-layer tactile skin using off-the-shelf yarns, and characterize our sensor on both a flat testbed and a curved surface to show its robust contact detection, multi-contact localization, and pressure sensing capabilities. The sensor is fabricated using a well-established textile manufacturing process with a programmable industrial knitting machine, which makes it highly customizable and low-cost. The textile nature of the sensor also makes it easily fit curved surfaces of different robots and have a friendly appearance. Using our tactile skins, we conduct closed-loop control with tactile feedback for two applications: (1) human lead-through control of a robot arm, and (2) human-robot interaction with a mobile robot. 
    more » « less
  4. A scarf is inherently reconfigurable: wearers often use it as a neck wrap, a shawl, a headband, a wristband, and more. We developed uKnit, a scarf-like soft sensor with scarf-like reconfigurability, built with machine knitting and electrical impedance tomography sensing. Soft wearable devices are comfortable and thus attractive for many human-computer interaction scenarios. While prior work has demonstrated various soft wearable capabilities, each capability is device- and location-specific, being incapable of meeting users’ various needs with a single device. In contrast, uKnit explores the possibility of one-soft-wearable-for-all. We describe the fabrication and sensing principles behind uKnit, demonstrate several example applications, and evaluate it with 10-participant user studies and a washability test. uKnit achieves 88.0%/78.2% accuracy for 5-class worn-location detection and 80.4%/75.4% accuracy for 7-class gesture recognition with a per-user/universal model. Moreover, it identifies respiratory rate with an error rate of 1.25 bpm and detects binary sitting postures with an average accuracy of 86.2%. 
    more » « less